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INTRODUCTION 

It is known that in finely dispersed porous materials with communicating pores filled 
with a liquid or gas, large-scale (with respect to the pore sizes) natural convection arises 
under specific conditions, which can have a significant effect on the heat-insulating proper- 
ties of these materials. Investigations of the average characteristics of the heat transfer 
through plane horizontal and vertical layers of porous material and a comparison of them with 
experimental data are performed in [1-4]. The effect of convection on heat transfer in 
porous annular interlayers, which are elements of many engineering constructions ~eat insula- 
tion of the volume contents of pipes, cables, and so on), is numerically investigated in this 
paper. Heat transfer in the annular interlayers of compression electric furnaces has Been 
investigated in [5, 6]. Investigations have been carried out in [7, 8] for homogeneous an- 
nular interlayers filled with a liquid or gas. 

w An annular interlayer of finely dispersed isotropic porous material is formed by 
two horixontal coaxial cylinders on whose outer and inner surface are maintained the constant 
temperatures T2 and T:, respectively. 

In order to calculate the flow field and heat transfer the convection equations are used 
in the Boussinesq approximation, and the surface-friction force is replaced by the equivalent 
volume drag force in accordance with Darcy's law [9]. For the steady-state convection mode 
this system has the form 

~ v / k  = - -  VP -4- pg~AT, C1.11 
div v = 0, p%(vv)T = %*v~T, 

where p i s  t he  d e n s i t y ,  B i s  t he  volume e x p a n s i o n  c o e f f i c i e n t ,  p i s  t h e  dynamic  v i s c o s i t y  c o -  
e f f i c i e n t ,  v i s  t he  v e l o c i t y ,  Cp i s  t he  s p e c i f i c  h e a t  o f  t h e  gas  o r  l i q u i d  f i l l i n g  t he  p o r e s ,  
X* i s  t h e  t h e r m a l  c o n d u c t i v i t y  o f  t he  p o r o u s  medium w i t h o u t  c o n v e c t i o n  t a k e n  i n t o  a c c o u n t ,  p 
i s  t h e  p r e s s u r e  d i f f e r e n c e  f rom t h e  s t a t i c  v a l u e ,  T i s  t h e  mean t e m p e r a t u r e  o f  t h e  medium, AT 
i s  t h e  d i f f e r e n c e  be tween  the  l o c a l  and some c h a r a c t e r i s t i c  t e m p e r a t u r e ,  and k i s  t h e  perme-  
a b i l i t y  c o e f f i c i e n t  o f  t he  p o r o u s  medium. 

D e t e r m i n i n g ,  as  u s u a l ,  t h e  s t r e a m  f u n c t i o n  ~ by t he  r e l a t i o n s h i p s  u = 35 /3y ,  and v = 
--3~/3x (u and v a r e  t h e  components  o f  t h e  v e l o c i t y  v on the  x and y axes )  and e l i m i n a t i n g  t h e  
p r e s s u r e  f rom the  e q u a t i o n s  o f  m o t i o n  C I . 1 ) ,  we w r i t e  down in  t h e  p o l a r  c o o r d i n a t e  s y s t e m  i n  
d i m e n s i b n l e s s  fo rm t h e  s y s t e m  o f  e q u a t i o n s  f o r  t he  s t r e a m  f u n c t i o n  and t h e  t e m p e r a t u r e  0 

025 l O $ ~ t  0~-$ _Ra,(o_~_cosq~ 1 ae sincp), 
Or z' q" 7 ~ J r ~ Oq~ 2 = r Oqf 

a~e t ae i a~e t ( 0 ,  08 o, ae) 
a~ ~ ~  + - 7 "  a--F 4- r.~ a+~ = 7 a+ Or Or ~'~ ' 

where Ra* = g~kp2cpAT/~% * is the Rayleigh 
Rayleigh criterion for a porous medium. 

r 

filtration number, which is the analogue of the 
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Fig. i 

The following quantities are selected as the scales for the reduction to dimensionless 
form: length scale 6 = R= -- Rz, velocity scale a*/~ (a* = %*/Cpp), temperature scale AT = 
T= -- Tx, and pressure scale Ba*/k. 

The boundary conditions are of the form 

0 = 0 at r = r~, / ~/2~< q~<n /2 ,  
0 = t  at r = r ~  

0010~ = 0  at rl ~ r <~ r~, cp = +~I2 .  

The last condition indicates symmetry with respect to the vertical axis passing through 
the center of the region. This condition and the two-dimensional nature of the fields are 
the main assumptions which may not be satisfied for large values of Ra*. The determination 
of the range of applicability of these assumptions requires additional research. 

w A finite-difference scheme for the numerical solution of the system (1.2) is set up 
by the balance method, which was applied earlier to the calculation of natural convection in 
homogeneous media [7, 8]. Tothis end each equation of the system is integrated over an 
elementary cell of a grid. The grid is introduced by the coordinates 

r~ =r1+iAr, i=0, i, 2,..., l, 

~j = - - n ~ + ] h ~ ,  ] = 0 ,  i ,  2 . . . . . .  m. 

According to Green's equations, a portion of the two-dimensional integrals is converted 
into curvilinear integrals along the boundary of the cell, which are then replaced 5y finite 
sums. The remaining integrals are calculated according to the theorem of the mean, whereby 
the derivatives at the central point are obtained as the arithmetic mean values of the deriva- 
tives on the four sides of the cell. The steady-state solution of the system (1.2) is found 
by the build-up method with the help of iterations on some parameter analogous to the time. 

A null field of the stream function ~(r, @) = 0 and a logarithmic temperature distribu- 
tion between the heated and cold walls, which is characteristic for the thermal conductivity 
mode, are specified as the initial conditions. 

The solution of the finite-difference equations is carried out according to the explicit 
scheme of the Seidel method [I0]. The difference analogue of the system ~.2) has the form 

Z n �9 ?+t  z n ' A * ~  ( i j ,  zn n~i .n+~ 
Zit3 = i d  "-7: i + t d ;  Z id+ t ;  Zi,3--1; ~i - - t , J ] ,  

z~,~=z(r~, ~j, *~), x n = n A T ,  n = 0 ,  i ,  2 . . . . .  

where r is the difference operator of the system approximating (1.2~. 
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Fig. 2 

The iteration step AT is selected from the stability conditions of the scheme, obtained 
by the Fourier method, and is corrected in the course of the actual calculations for dif- 
ferent values of the Rayleigh criterion. 

The numerical realization of the system of equations (1.2) possesses some specific prop- 
erties, including a large sensitivity of the scheme to the grid parameters in comparsion with 
the case of the calculation of the convection of a homogeneous fluid [7, 8~, which is pro- 
duced by the characteristics of both the system (1.2) itself and the boundary conditions for 
the velocity field (~/~n ~ 0, in contrast to [7, 8J). 

The systematic calculations which were performed have permitted recognizing the essential 
grid parameters for producing sufficiently accurate solutions. The control of the accuracy 
of the calculations is accomplished by, in addition to a comparison of solutions with dif- 
ferent grids, checking the discrepancies of the integral heat balances on the outer and inner 
surfaces of a layer. The main calculations were performed with a 22 • 22 difference grid and 
also with a 16 x 30 grid for one~,half of the annular region in the case of relatively thin 
interlayers. 

The results given below refer to the case T2 > T: (the outer cylinder has a higher tem- 
perature). In the case in which the inner cylinder is heated, the temperature field is sym- 
metrical with respect to the radial line (~ = 0). 

The variation of the local Nusselt numbers Nu i(~) along the outer ~i = 2~ and inner 
(i = i) surfaces obtained with three different grids is shown in Fig. I (Ra* = 600, ru/r~ = 
2). The numbers Nu i are determined as dimensionless temperature gradients on the b7oundaries 
of the region and are approximated by three-point formulas of second-order accuracy within 
the region. As is evident from Fig. i, the results are overestimated with a grid too coarse 
in radius, and the maximum discrepancy of the local thermal fluxes with the 17 • 17 (curve 3) 
and 16 x 30 (curve 2) grids compared with the results using a 22 • 22 grid (curve l) amount 
to i0%. 

w The typical pattern of steady-state motion and the temperature field in the region 
under discussion is shown in Fig. 2 (Ra* = i000, ra/r~ = 2). Natural filtration of the fluid 
in the porous medium occurs, as is evident from the pattern of the streamlines ~ on the left 
in Fig. 2, as in a homogeneous medium along crescent-shaped trajectories upward along the 
heated outer wall and downward along the cold inner wall. A heated stagnation zone is formed 
in the upper part of the cavity, which is readily visible both from the patterns of the stream- 
lines and from the isotherms on the right in Fig. 2. The temperature in the upper part of the 
cavity is higher, which causes heat transfer along the layer. As the Raylelgh filtration 
number increases, the strength of the convective flow and the temperature stratification in- 
crease, which leads for some Rayleigh numbers to the formation of regions with a reverse 
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temperature gradient. The temperature stratification exerts an appreciable effect on the 
development of boundary layers and, consequently, on the distribution of heat fluxes on the 
cold and heated surfaces. The distributions of local Nusselt numbers along the inner and 
outer boundaries of the region are given in Fig. 3 (r2/r~ = 2) for different values of the 
Rayleigh filtration number. The maximum local heat fluxes are realized at the initial sec- 
tion of the fluid flows washing over the cold and hot walls. As the thickness of the bound- 
ary layers increases, the local Nusselt numbers decrease, reaching values at ~ = ~/2 on the 
hot and ~=--~/2 on the cold Surface which are less than the corresponding fluxes under con- 
ditions of pure thermal conduction. As follows from Fig. 3, this inequality of the thermal 
fluxes on the boundaries increases as Ra* increase. This tendency occurs upon an increase 
of r2/r, (Fig. 4, Ra* = 200); therefore, information only on mean values of the convective 
heat transfer (<Nu> or ec) may be insufficient, for example, for the calculation of the heat- 
ing up of construction elements protected by porous insulation. 

The principal quantity being sought, which is of interest for engineering applications, 
is the convection coefficient ec, which is equal to the ratio of the mean heat flux through 
the interlayer when convection is present to the heat flux under conditions of thermal con- 
ductivity. The criterion equation for the convection coefficient is of the form 

8c i = ec i (Ha*, r ~ l ) ,  

~q=<Nu~)rtlnr2/rl, i = i ,  2, 

where 

2 

<Nui> = -~ ~ , 

--f 

The dependence of the convection coefficient on the Rayleigh filtration number is given 
in Fig. 5 for different values of the size of the gap width r2/r~. As in the case of convec- 
tion in a homogeneous layer of liquid or gas [7, 8], one can distinguish three modes here: 
the thermal conductivity mode (small values of Ra*), an intermediate mode, and the boundary- 
layer mode. 

The results of the analytic solution [5], which is valid for small Ra*, are denoted by 
the dashed lines in Fig. 5. The experimentally measured values of the convection coefficient 
[5, 6], obtained in permeable heat insulation ~a filling of sand and graphite, k ~ 1.3.10 -9 
and k ~ 8-i0 -m m 2, respectively) in a nitrogen and argon atmosphere at a pressure up to 130 
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r rl 513 2 5J125 OO5 

Ra 0 1 , 2 1 , 4 1  20 I s7 I ,oo I 2000 

arm for two geometries of the annular layer (r2 = 26.9 mm, r: = 13.5 mm and r2 = 32.5 mm, 
rl = 17.5 mm), are shown (with scatter taken into account) by the crosshatched regions. 
For each r2/r: relationship it is possible to determine the value of the Rayleigh filtra- 
tion number Ra~ starting from which the role of convection in the heat transfer becomes per- 
ceptible. The values of Rao for which the convection coefficient differs from unity by 5% 
are given in Table i. 

In the boundary-layer mode (delineated by the dashed--dotted line) the dependence of the 
convection coefficient on the Rayleigh number is a power-law relation: ec = c(Ra*)~ 57, and 
c is a function of the ratio of radii r2/rl and has the form c = 0.406(iog r2/rl)~ for 
1.2 ~r2/rl ~3. 

The greatest variations of the convection coefficient are observed when r2/rl varies 
within the interval 1.005~-~r2/r1~2.5; the larger Ra* is, the stronger is the effect of 
the radius ratio r~/rl on the quantity ec. For relatively wide interlayers (3 ~r2/r~< 8), 
ec is practically independent of the geometry. 

Thus, the results of the numerical investigations shows that, Just as in plane inter- 
layers [2, 3], a distinctive feature of convection in annular porous interlayers (in compari- 
son with the case of a homogeneous medium) is a stronger dependence of the mean thermal flux 
through the layer on the Rayleigh number and the geometry, as well as an appreciably greater 
inequality in the distribution of local thermal fluxes on the region boundaries. 

The authors express their gratitude to V. L. Mal'ter for the use of his experimental 
data and for useful discussions of the results of this research. 
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ANALYTIC DESCRIPTION OF BINARY MELT CRYSTALLIZATION 

T. A. Cherepanova UI)C 536.42+536.421+518.517 

In [i, 2] an approach was developed for the analytic description of the crystallization 
of binary systems. Diffusion processes at the interphase boundary were assumed to occur so 
intensely that the concentration in the melt was independent of the local phase-boundary con- 
figuration. Such an approximation is physically justifiable if the crystallization process 
is limited to its kinetic stage. In the case where the characteristic rate of diffusion mass 
transfer in the concentrationboundary layer is less than the maximum possible growth rate 
at specified temperature values and specified component concentrations in the melt core, we 
must consider the crystallization process in a diffusion regime. The growth rate and struc- 
tural characteristics of the interphase zone are then determined by diffusion mass transfer 
to the phase boundary and the value of the concentration gradient which develops near the 
boundary. 

The purpose of the present study is an analytic description of the crystallization of 
binary melts with consideration of diffusion in the melt. With a microscopic examination of 
the kinetics of elementary process we will obtain a system of finite-difference equations for 
the diffusion boundary layer near the surface of the growing crystal faces. 

We will consider a lattice model of the binary crystal--melt system. We assume that 
atoms of the u and 8 components are located at lattice points and belong to either the liquid 
or solid phase. At each lattice point there is located only one such particle, the total 
number of which is equal to N. Interaction within the system will be described by the values 

of the effective binding energies of the most closely neighboring solid particles ~, ~i~, 

~11; of solid particles with liquid particles ~,o  , ~zo,  ~ , o '  ~ o , ,  and of liquid particles ~oo, 

~8 88 (the subscript 0 denotes the liquid phase, while the subscript 1 denotes the solid ~oo, ~oo 
phase). As in [1, 2], the configuration of the distribution of atoms over the system is 

- -I~'l, where ~j = i if at the j-th lattice point a solid specified by a set of parameters g= NJ 

particle exists and qj = 0 if a liquid particle is present; ~j defines the type of particle 
at this point (~j = ~, 8). We denote by p(g, t) the probability of finding the system at 
time t in a state with configuration g. The time evolution of the distribution function 
p(g, t) in our model is the result of completion of ~ementary events of transition of liquid 

Riga. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskol Fiziki, No. 6, pp. 
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